ECE 568F Computer Security

Lecture 1: Introduction to Security and Course Information

Course Instructor: Wei Huang

What is Security?

• Goal vs. Adversary

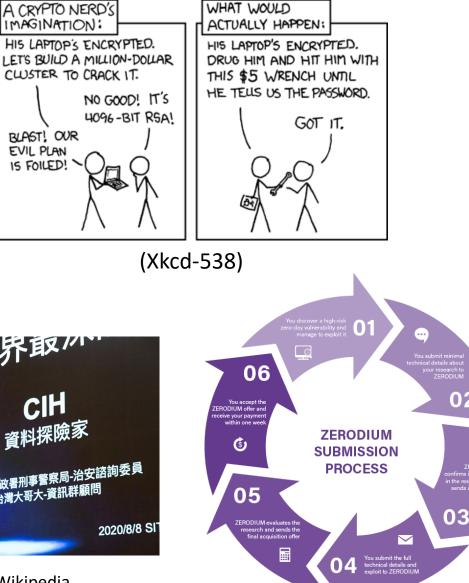
- Security Policies
 - Confidentiality
 - Integrity
 - Availability
 - ...

02

(

© zerodium.com 3

Threat Model


- Assumptions about the adversary
- Attacker's motivation --- Economics
 - Fun & Profit
 - Vulnerability Marketplace

EVIL PLAN 15 FOILED!

Photo from Wikipedia

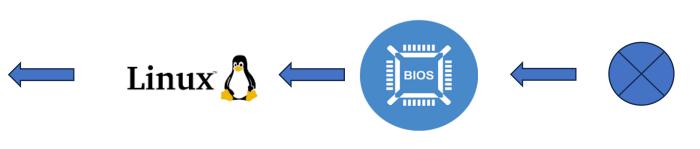
Security Mechanism


- How to help uphold a security policy, e.g.,
 - Permission system
 - Encryption
 - Hardware protection
 - ...

• Security goal has nothing to say about security mechanism

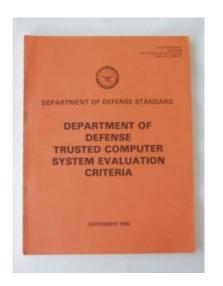
Why is Security Hard?

- Assuming the threat model
 - Realistic scenario
 - Updating environment
- Enumerating all possible ways to attack
- Weakest link matters
- Hardware changing
- There are always human errors


What Can We Trust?

• Ken Thompson: Reflections on Trusting Trust (CACM, 1984)

static void loginpam auth(struct login context *cxt) 928 929 { 930 int rc, show_unknown, keep_username; 931 unsigned int retries, failcount = 0; 932 const char *hostname = cxt->hostname ? cxt->hostname : 933 cxt->tty_name ? cxt->tty_name : "<unknown>"; 934 pam_handle_t *pamh = cxt->pamh; 935 936 /* if we didn't get a user on the command line, set it to NULL */ 937 loginpam get username(pamh, &cxt->username); 938 939 show_unknown = getlogindefs_bool("LOG_UNKFAIL_ENAB", 0); 940 retries = getlogindefs_num("LOGIN_RETRIES", LOGIN_MAX_TRIES); 941 keep_username = getlogindefs_bool("LOGIN_KEEP_USERNAME", 0); 942



What Can We Trust?

- Nothing can be trusted
 - But we still need to work something out
- Assuming TCB: Trusted Computing Base
 - The minimal part of the system is not compromised
 - All secure systems built on top of that

Class Break

- See you in 15 minutes
- Next Session: Computer Security in the Future, Course information, Logistics, Q&A

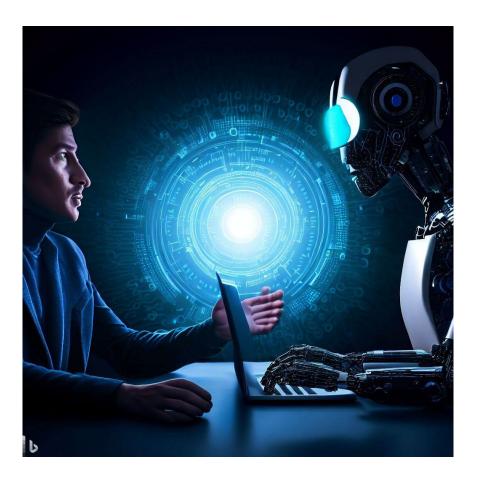
Computer Security in the Future

- Data Privacy
- Artificial Intelligence (AI)
- Internet-of-things (IoT)
- Cybercrime-as-a-service (CaaS)

Future: Data Privacy

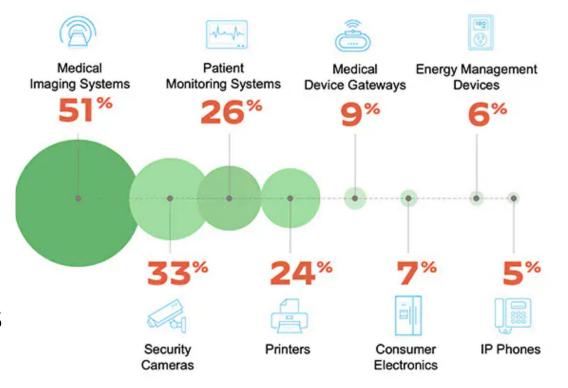
Data Privacy	

- Governing how data is collected, shared and used
- Compliance with data protection laws and regulations



- Protecting data from internal and external attackers
- Measures that an organization is taking in order to prevent any third party from unauthorized access

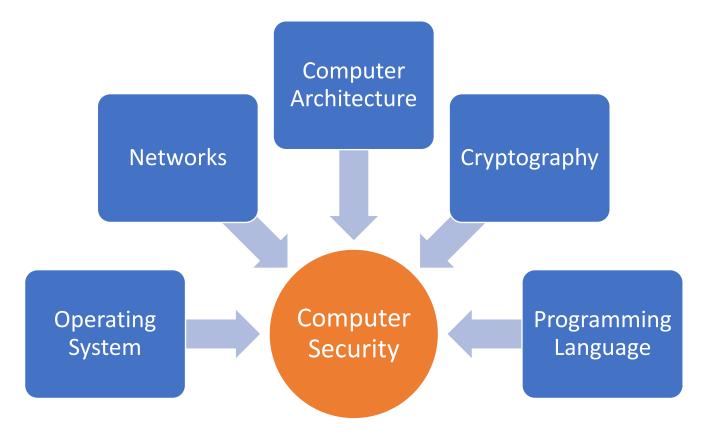
Future: Artificial Intelligence


- Concept and scope may change:
 - Adversaries
 - Defenders
- Laws and regulations may need to adapt

Future: Internet of Things

- IoT systems lack of
 - Secure update system
 - Physical barriers
 - Privacy protection
 - Network services
- Legacy liabilities
- Insecure or outdated components

IoT Devices with highest share of security issues (from: Palo Alto Networks)


Future: Cybercrime

- Cybercrime prevention and security
- Mysterious guest lecturer

Course Prerequisites and Placement

Course Outline

- Introduction
- Software Code Vulnerabilities
 - Buffer Over-flows, ROP, Format String, CFI ...
- Cryptography and OS Security
 - Basic ciphers, encryptions, Key exchange, MAC,
 - Secure hardware, OS kernel security, Side channel ..
- Network Security
 - Secure communication, SSL, Web authentication, XSS...
 - Network protocol attacks, DNS security ...
 - Blockchains, Crypto currencies, Cybercrimes ...

Course Deliveries

- Lecture slides
 - Every week
- Reference books and articles
 - Provided on course website, optional readings, not required
- 4 Labs assignments
 - Provided on course website
- Office hours
 - By appointment

Course Marking

- Labs
 - 30%
- Mid-Term Exam
 - 30%
- Final Exam
 - 40%

Course Policy

- Discussion policy:
 - Raise your question on class discussion board
 - Email instructor and TAs
 - Schedule office hours with instructor
- Plagiarism
 - University policy
- Artificial intelligence aid:
 - (ChatGPT, Co-Pilot, Codeium, Code Whisperer, ...)
 - Need to claim which part is AI-generated, even after manual modifications
 - Use with care

Summary of Computer Security Introduction

• You can't get any further away, before you start coming back

-- The Truman Show (1998)

Questions about the course

• Q&A