
1

ECE568 Lecture 03:
Format String, Double Free and

Buffer Overflow Defence

Wei Huang
Department of Electrical and Computer Engineering

University of Toronto

2ECE568: Computer Security

Lecture Outline

• Format String Vulnerabilities
– Vulnerability itself
– Exploiting Format String Vulnerabilities

• Double Free Vulnerabilities
– Vulnerability itself
– Exploitation

• Buffer Overflow Defence
– …

3ECE568: Computer Security

Format String Vulnerabilities

1. Simple format string vulnerability:
sprintf(buf, “Some stuff %s”, attacker_string);

• This is essentially the same as a strcpy, which results in a
buffer overflow

2. More complex vulnerability
snprintf(buf, bufsize, attacker_string);

• Here there is no buffer overflow as bufsize controls how
many characters will be written into buf. However, the
attacker gets to specify the format string.

4ECE568: Computer Security

Format String Functions

• Family of functions: printf, sprintf, snprintf, etc…
– What does printf (“%s”, val) do?

– What about printf(“%d”, val)?

– What about printf(“0x%x\n”, val)

5ECE568: Computer Security

snprintf Operation

void main() {
 char buf[20];
 /* 20 specifies the max # of

characters to print */
 snprintf(buf,20,”AB%d%d”,5,6);
}

1. Arguments are pushed onto the
stack in reverse order.

2. sprintf copies everything in the
format string till it sees a “%”.

3. A pointer to the current
argument on the stack is then
used to fill the next format
character.

4. It is then moved to the next
argument down the stack to get
the next argument.

6
5

&(“AB%d%d”)
20

Return Addr
Frame Ptr

Subroutine
Parameters

buf

Contents of the Stack:

Contents of the buf:
AB5

Current
argument

6

6ECE568: Computer Security

Unexpected Behavior

• Now what happens if there are
more “%” characters than
arguments pushed on the
stack?
– The argument pointer keeps

moving up the stack even
though there are no
arguments. It points to
values in the previous stack
frame

Local Vars (buf)
5

&(“AAA_0 ….”)
256

Return Addr
Frame Ptr

Stack
frame

of
“main”

buf

Contents of the Stack:

Current
argument

void main()

{

 char buf[256];

 snprintf(buf, 256, "AAA0_%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",5);

 printf(buf);
}

Stack frame
of “sprintf”

7ECE568: Computer Security

Unexpected Behavior

• The output of the program is:
AAA0_00000005.001bc4f8.00000000.bff63284.001ae639.008bea0e.30414141.303

0305f.30303030

 Format String: (“AAA0_%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n”)

• Note that 0x30414141 corresponds to our string “AAA0”
(remember that the x86 is little endian). This means that the
argument pointer has crawled its way into the next stack frame
and is pointing into buf in main()!

• But we have to somehow overwrite the return address, how do
we do this?

8ECE568: Computer Security

Format String Function Man Page

PRINTF(3) Linux Programmer’s Manual PRINTF(3)

NAME
 printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf,
 vsnprintf - formatted output conversion

SYNOPSIS
 #include <stdio.h>

 int printf(const char *format, ...);
 int fprintf(FILE *stream, const char *format, ...);
 int sprintf(char *str, const char *format, ...);
 int snprintf(char *str, size_t size, const char *format, ...);
…
The flag characters

The character % is followed by zero or more of the following flags:

n The number of characters written so far is stored into the

integer indicated by the int * (or variant) pointer argument.
No argument is converted.

9ECE568: Computer Security

Arbitrary read and write primitives

• This gives attackers an “arbitrary write primitive”
– Attacker can control what is written by controlling

the number of characters written
– Attacker can control where data is written by

controlling what the current argument pointer is
pointing to when function hits the %n

• This almost gives attacker an “arbitrary read primitive”
– Attacker can almost control where the current

argument pointer points and can read from the
location

– Almost: argument pointer only goes up in memory,
can’t read below the stack, but enough for the
attack

10ECE568: Computer Security

Exploiting Format String Vulnerabilities

• Overall plan for format string attacks:
1. Identify a format string function where you get to specify the

format string.
2. At the front of your format string, put the address where you

think the return address is stored.
3. Put your shellcode in the format string.
4. Put enough “%” arguments so that the argument pointer

points to the front of your format string
5. Put a %n at the end and overwrite the return address to

point at the shellcode in the buffer.

Addr of Return Addr Shellcode %x’s %n

Attack Buffer:

11ECE568: Computer Security

Optimization

• Note that functions like snprintf will interpret the whole format string
regardless of what the length of the output is. If the output is longer
than the specified length, they truncate the output afterwards.

• You can control the number of characters written out by changing the
number between the “%” and x,u or d. For example %243u will write
out 243 characters exactly.
– However, creating a 32-bit number to overwrite the return address

would mean that you’d have to write out A LOT of characters (more
than will fit in memory actually). Fortunately, what you can do is
write the 32-bit number 1 byte at a time.

RA Shellcode

%x’s %hhn

Junk RA+1 Junk RA+2 Junk RA+3

%##x+
• For more info, see the article:

– “Exploiting Format String Vulnerabilities” by Scut, posted on the
website and in Lab1 tarball

%hhn %##x %hhn %##x %hhn

12ECE568: Computer Security

Example

• The attacker wants to write 0x10121110 to return address at
0xbfffffa0, there are 4 bytes between format string and buffer,
with no arguments. How to build attacking string?

13ECE568: Computer Security

Double Free Vulnerability

• Freeing a memory location that is under the control of an
attacker is an exploitable vulnerability. For example:

 p = malloc(128);

 q = malloc(128);

 …

 free(p);

 free(q);

 p = malloc(256);

 strcpy(p, attacker_string);

 free(q);

• Why is this vulnerable?
– To understand, lets look at how malloc works

Vulnerability!

14ECE568: Computer Security

Malloc

• Malloc maintains a doubly link-list of free and allocated memory
regions:
– Information about regions is maintained in Chunk Tag that is stored

just before a region. Each chunk maintains:
• Whether the chunk is allocated or free in the free bit
• Links to the next and previous chunk tags

– Initially when all memory is unallocated, it is in one free memory
region

– When a region is allocated, malloc creates two regions, one is free,
and one is allocated:

Free RegionTag

Free RegionTag P Region Tag

15ECE568: Computer Security

Tag

Malloc

• When another region is allocated, another tag is created:

• When regions are deleted, the free() function sets the free bit

• Free() also tries to consolidate adjacent free regions

Free RegionTag P Region Tag TagQ Region

Free RegionTag P Region Tag TagFree Region

Free RegionTag P Region

Tag

Tag

Tag

16ECE568: Computer Security

Code for free()

• To consolidate:
– free() removes a tag element from the list

• Code:
tag->prev->next = tag->next
Tag->next->prev = tag->prev

Free RegionTag P Region Tag TagFree Region TagTag

17ECE568: Computer Security

Double-Free Vulnerability

• A vulnerability occurs when the program calls free on a region
that contains data set by the attacker:
– The free() function will look at the address just before the

address where the program calls free to find the chunk tag
– In this case, the chunk tag is part of the attacker’s string
– The attacker can set the value of the chunk tag such that

she can make free() overwrite a location in memory of the
attacker’s choice (like a return address) with a value that the
attacker chooses.

Free RegionTag Attacker String Tag

free()

Tag

Attacker’s Chunk Tag:
chunkTag

18ECE568: Computer Security

Double-Free Vulnerability

tag free regiontag

q

fake
tagshellcode

fake tag

prev

Return
Address

next

tag = q - sizeof(chunkTag);
tag->next->prev = tag->prev;

When consolidating free regions, free essentially does:

Next

19ECE568: Computer Security

Break

• Be back in 10 minutes
• Next session: Defence to Buffer Overflow Attacks

20ECE568: Computer Security

Defence to Buffer Overflow Attacks

• Preventing return address overwrite
• Preventing execution of injected code
• Making it hard to guess the target address

21ECE568: Computer Security

Defenses

• The most obvious way to defend against buffer overflow and
format string vulnerabilities is not to make them:
– Rigorous code audits
– Using a type safe language that does bounds checking (i.e.

JAVA, ADA)
• This means code will be memory safe (i.e. compiler will enforce

the memory access rules of the language)

• However, this is not always possible:
– Too much code already exists to move to another language
– Source code is not available
– Performance may be a concern

22ECE568: Computer Security

Desired defense properties

Requires no changes to source code
– Many programs are large
– Vulnerabilities will be present, so must prevent exploitation

Low overhead:
– Defense does not make program execute slowly

(performance)
– Defense does not use up too much extra memory

Other desirables:
– Only takes effect if an attack actually occurs (accuracy)
– Does not require source code or specialized knowledge to

use (usability)

23ECE568: Computer Security

A Generic Defense?

Buffer overflow attack requires an input string to be copied into
a buffer without bounds checking
• Typical attack requires three steps

1. Overwrite code pointer such as return address
2. Inject shell code
3. Redirect execution to shell code

What is needed for these steps to succeed?
1. Ability to overwrite return address
2. Injected code has to be executable
3. Target address has to be guessed

Let’s look at how to detect or prevent each of these steps…

24

Defense #1: Preventing overwrite of return
address

25ECE568: Computer Security

Stack Canary

• Miner’s canary

26ECE568: Computer Security

Defending Against Stack Smashing

• Recent protection techniques will prevent the return address
from being overwritten:
– Stackshield: Put return addresses on a separate stack with

no data
– Stackguard: Crispin Cowan’s solution [previous lecture’s ref]

Return Addr

buf[]

Frame Pointer

Canary

• How Stackguard works:
– On a function call, a random “Canary” Value is

placed just before the return address.
– When the function returns, it first checks the

canary value. If the value has changed,
program execution is halted.

– Support in both GCC and MSVC++

27ECE568: Computer Security

Response: Function Pointers

• Rather than overwriting the return address, the adversary can
try to overwrite a function pointer

• Recall:
– A function pointer is a variable that can be dereferenced to

call a function:
int foo(int arg1) {

...

}

/* define a function pointer */

int (*fp)(int arg1);

/* assign the address of a function to the pointer */

fp = &foo;

/* call the function via the pointer */

fp(6);

28ECE568: Computer Security

Function Pointers

• Function pointers are often used in C to mimic polymorphism
that’s supported in object oriented languages. The are also
useful to enable changing functions at run time:
– Very common in OS kernels where the kernel has to run with

different modules or drivers without recompilation.
– Also common in other programs that use modules such as

web servers, etc…
– Used to support dynamically loaded libraries.
– Common in object-oriented languages (i.e. C++ vtables)

• Sometimes the buffer will not be close enough to the return
address, but will sit next to a function pointer.
– By overwriting the function pointer, the attacker can cause

execution to be redirected next time the program calls the
function pointer.

29ECE568: Computer Security

Dynamic Linking

Program code needs to call functions such as printf in dynamic
libraries
• These libraries are normally linked into the program at run time,

at arbitrary locations, by a dynamic linker
• Typically, both the caller of a library function and the function

itself are compiled to be position independent
• We need to map the position independent function call to the

absolute location of the function’s code in the library
– The dynamic linker performs this mapping
– It uses two tables: the Procedure Linkage Table (PLT) and

the Global Offset Table (GOT)

30ECE568: Computer Security

PLT/GOT

GOT is a table of function pointers:
– Contains the absolute memory location of each of the

dynamically-loaded library functions
– Locations are only known at runtime

PLT is a table of small functions:
– One function in table per library function used by the

program.
– First time it’s called, the PLT function invokes dynamic

linker to fill in the location of the function in the GOT.
– Also load library from disk if the first time any code from the

library is called

31ECE568: Computer Security

PLT/GOT Overwrites

Suppose that an attacker is only able to overwrite a single
chosen address location with a chosen value

– Then a good option is to overwrite a GOT function pointer
A binary utility like objdump –x allows dissassembling an
executable

– It provides the location of these structures
– PLT/GOT always appear at a known location

Note this is specific only to ELF binaries used in UNIX systems.
Windows and Mac systems use slightly different method.

32ECE568: Computer Security

Response: Argument Overwrite

• If she can’t redirect execution, she may also be able to affect an
argument passed to an exec system call. For example, a
program has:

 char buf[128] = “my_program”;

 char vulnerable[32];

 exec(buf);

– The attacker can corrupt the argument buf by overflowing
vulnerable and have the program execute something else.

33ECE568: Computer Security

Response: Bad Bounds Check

Who can see what’s wrong with this bounds check?
 /* Linux 2.4.5/drivers/char/drm/i810_dma.c */
 if(copy_from_user(&d, arg, sizeof(arg)))
 return –EFAULT;
 if(d.idx > dma->buf_count)
 return –EINVAL;
 buf = dma->buflist[d.idx];
 copy_from_user(buf->virtual, d.address, d.used);

• While this vulnerability doesn’t allow the attacker to hijack the program,
such vulnerabilities have led to remote code execution in the past (e.g.
the do_brk() function in the Linux 2.4.22 kernel). They can also let the
attacker overwrite arbitrary memory locations.

34

Defense #2: Preventing execution of injected code

35ECE568: Computer Security

Defense: Non-Executable Pages

• As of 2004 all Intel and AMD processors support non-
executable pages (pages can only contain data, not code).
– This means the shellcode in your buffer won’t execute since

it is only interpreted by the processor as data. Called “Data
Execute Prevention” (DEP) on Windows systems

– However, the attacker can still redirect execution, so she
redirects it to a function that already exists in the code that
accomplishes the same thing. This is called a return-into-
libc attack.

– For example, she may find another place in the program that
calls exec or system which can also be used to execute an
arbitrary program.

36ECE568: Computer Security

Response: Return into LibC

• Another way to avoid injecting new code is to use code that is
already present:
– Many libc functions have code that is useful to the attacker.

For example, the system call (from man page):

 Isn’t this just as good as your own shell code? How can
attacker use this?

int system(const char *string);
• system() executes a command specified in string by

calling /bin/sh -c string,

37ECE568: Computer Security

Return-oriented programming (ROP)

What if the desired attack code can’t be performed with only one
libc function?
• Can string together libc calls with a corrupted stack
• When first function returns, it looks on the stack to find the return

address to the next function
Observation:
• You can inject multiple calls in a corrupted stack

38ECE568: Computer Security

Return-oriented programming

Method:
• Note that there is a lot of code in standard libraries (i.e. libc)
• You don’t have to return to the start a function, you can return

anywhere
– You can find return instructions in the middle of functions
– Because x86 instructions are variable, you can actually

return into the middle of an instruction!
• Because of this, you can find “gadgets” – small sections of code

that execute any instruction you want, followed by a return
– Turing complete! (read ROP paper in course ref)

• Drawbacks for the attacker:
– Large attack buffers required
– Lots of returns generated

39ECE568: Computer Security

Example

• Suppose adversary has the following gadgets available. How
can she construct a stack frame that will execute the system call
exit(-1)?
0x00a12345: int 0x80

ret
0x00a19425: mov 0x0, eax

ret
0x00a29493: mov 0x1, ebx

ret
0x00a31495: add ebx, ebx

ret
0x00a35946: pop ebx

ret
0x00a36723: push ebx

ret

40

Defense #3: Preventing guessing the target address

41ECE568: Computer Security

Defense: Address-Space Layout
Randomization (ASLR)

Recall that the target address (e.g., the buffer’s
location on the stack) has to be guessed:
• With ASLR, the OS maps the stack of each

process at a randomly selected location with
each invocation
– An attacker will not be able to easily guess

the target address
– Application will crash rather than executing

the attacker’s code
– ASLR also randomizes location of

dynamically loaded libraries, making it
harder to perform return-into-libc attacks or
GOT overwrites

• Linux 2.6, Android 4.0 and Windows Vista and
later use ASLR

stack

Process 1

stack

Process 2

42ECE568: Computer Security

Guessing address

A lot of server code will restart crashed processes to maintain
availability
• This gives the attacker a chance to attack the same application

repeatedly and guess different locations.
• Computers are very fast, can do many guesses quickly
• To work, ASLR must have enough entropy to randomize from

– Need large address space to have many possibilities
– There are restrictions like stack being at the top of memory,

code at the bottom
– ASLR is much more effective with 64-bit code than 32-bit

code.

43ECE568: Computer Security

Address space leakage

Format string-like vulnerabilities can leak address space contents
or pointers. Requires 2 step attack:
• Step 1: Learn the location of a known object, enabling attacker

to know the layout
• Step 2: Exploit vulnerability and overwrite code pointer with

known location

44ECE568: Computer Security

Heap spray

If vulnerability allows overwrite of large sections of heap, just write
many copies of the shellcode and hope that we can jump into one:
• Common in dynamic compilation environments where NX-pages

aren’t use
• JVMs, javascript engines, etc…

45ECE568: Computer Security

Control-flow Integrity

Might be the ultimate defense against memory corruption attacks.
• All possible execution paths through a program are extracted

from the source code
• Checks are added to the compiled binary to enforce that only

paths explicit in the source code are taken.

46ECE568: Computer Security

Example

void foo(char *s) {

 char buf[32];

 strcpy(s,buf);

 return;

}

int main(int argc, char *argv[]) {

 void (*f)(char*) = &foo;

 f(argv[1]);

 system(“echo \”hello world\””);

}

47ECE568: Computer Security

Control flow integrity

Properties:
• No changes to source code (though source code is required)
• Can have significant performance overhead. In particular:

– Returns from commonly called functions can return to many
call sites. This requires checking return against a long list of
possible values.

– An alternative is to maintain a separate stack for return
addresses and prevent it from being overwritten. This is
expensive as it requires checking every memory access to
make sure it doesn’t modify the protected stack.

48ECE568: Computer Security

ROP Defenses

• Lower overhead defenses:
– Processors maintain a “Last Branch Record” (LBR), which is

the source and destination of the most recent returns
executed in hardware

– Periodically check the LBR for anomalies. I.e. too many
returns for number of instructions executed. Can also check
just before sensitive system call (i.e. exec, system …)

• Can have very low overhead ~5%

49ECE568: Computer Security

ROP Defenses

• kBouncer:
– Proposal from grad students at Columbia
– Won ~200K at Microsoft Bluehat contest

http://www.microsoft.com/security/bluehatprize
• ROPecker:

– More advanced version of kBouncer

• Unfortunately, broken again:
– See paper “ROP is Still Dangerous: Breaking Modern

Defenses”

http://www.microsoft.com/security/bluehatprize

50ECE568: Computer Security

Intel MPX/CET and ARM PAC

• As of September 2015, Intel has added Memory Protection
Extensions (MPX) to 6th Generation Intel processors (Skylake)

• Provide 4 additional registers that hold upper and lower bounds
for a buffer (Registers BND0..3)
– Provide 2 upper and lower bound check instructions (BNDCL

and BNDCU)
– Allow hardware supported bounds checking. If bound check

fails, exception is thrown
• Likely subsumed by Intel CET support:

– Hardware support for hardware checking of branch targets
and return addresses

– Available in the latest Tiger Lake Gen 11 processors,
General availability: Nov 2020

51ECE568: Computer Security

Intel MPX/CET and ARM PAC

• ARM Pointer Authentication (PAC)
– Observe that even though pointers are 64-bits, few

machines have enough memory to use all 64-bits. Typically
only ~40 bits are used

– Use the top ~20bits as a cryptographic checksum (we’ll be
talking about MAC’s in a couple of weeks)

– If pointer is overwritten, adversary does not know the correct
checksum to write, so tampering will be detected by
hardware

– Main concern is ~20-bits is not a lot of possibilities,
adversary may be able to guess the correct value with
enough tries.

52ECE568: Computer Security

Vulnerability Databases

• To aid computer administrators, there are several large
databases of vulnerabilities on the Internet:
– National Vulnerability Database (http://nvd.nist.gov)
– CERT (https://www.kb.cert.org/vuls/)
– VulDB (https://vuldb.com)
– MITRE CVE (https://www.cve.org)
– Exploit Database (https://www.exploit-db.com)

• For any program and version, one can do a lookup from these
databases and get a description of the vulnerability.

http://nvd.nist.gov/
https://www.kb.cert.org/vuls/)
https://vuldb.com/)
https://www.cve.org/
https://www.exploit-db.com/

53ECE568: Computer Security

Conclusion

• Easy to make a mistake and end up with a vulnerability.

• Exploiting them takes a bit of work, but is not beyond someone who
knows what they are doing.

• Certain vulnerabilities can be removed by moving to safer languages:
– A lot of vulnerabilities result from uses of pointers and running off

the end of arrays.
– Java doesn’t allow the use of pointers, does array bounds checking

automatically and has a stronger type system.

• However, the only real defense is to be aware of what vulnerabilities
exist, to be extra careful creating code and let others audit your code.

	ECE568 Lecture 03: �Format String, Double Free and�Buffer Overflow Defence
	Lecture Outline
	Format String Vulnerabilities
	Format String Functions
	snprintf Operation
	Unexpected Behavior
	Unexpected Behavior
	Format String Function Man Page
	Arbitrary read and write primitives
	Exploiting Format String Vulnerabilities
	Optimization
	Example
	Double Free Vulnerability
	Malloc
	Malloc
	Code for free()
	Double-Free Vulnerability
	Double-Free Vulnerability
	Break
	Defence to Buffer Overflow Attacks
	Defenses
	Desired defense properties
	A Generic Defense?
	Defense #1: Preventing overwrite of return address
	Stack Canary
	Defending Against Stack Smashing
	Response: Function Pointers
	Function Pointers
	Dynamic Linking
	PLT/GOT
	PLT/GOT Overwrites
	Response: Argument Overwrite
	Response: Bad Bounds Check
	Defense #2: Preventing execution of injected code
	Defense: Non-Executable Pages
	Response: Return into LibC
	Return-oriented programming (ROP)
	Return-oriented programming
	Example
	Defense #3: Preventing guessing the target address
	Defense: Address-Space Layout Randomization (ASLR)
	Guessing address
	Address space leakage
	Heap spray
	Control-flow Integrity
	Example
	Control flow integrity
	ROP Defenses
	ROP Defenses
	Intel MPX/CET and ARM PAC
	Intel MPX/CET and ARM PAC
	Vulnerability Databases
	Conclusion

