
Midterm ECE568: Computer Security Pg. 1 of 6

ECE 568 – Computer Security

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

Midterm Examination, Part 1, October 2021

Name

Student #

Answer all questions. Write your answers on the exam paper. Show your work.
Each question has a different assigned value, as indicated.

Permitted: one 8.5 x 11”, two-sided page of notes.
No other printed or written material. No calculator.
NO PHOTOCOPIED MATERIAL
Total time: 50 minutes
Total marks available: 50 (roughly one mark per minute)
Verify that your exam has all the pages.
Only exams written in ink will be eligible for re-marking.

1 /25 2 /25 Total

Midterm ECE568: Computer Security Pg. 2 of 6

Question 1: Buffer overflows [25 marks]

Program:

1: int foo(char *arg) {
2: char buf[64];
3: int p, j, min, len;
4:
5: p = 138;
6: min = (strlen(arg) > p) ? p : strlen(arg);
7: len = min;
8:
9: for (j = 0; j <= len; j++)
10: buf[j] = arg[j+10];
11:
12: return 0;
13: }
14:
15: int main(int argc, char *argv[]) {
16: char string[20] = “abc”;
17:
18: str = &string[1];
19: /* the arguments for snprintf are
 int snprintf(char *target_buffer, size_t len, char * fmt_str, ...) */

20: snprintf(str, 20, argv[1]);
21: foo(argv[2]);
22:
23: return 0;
24: }

Registers:

rbp 0x7ffdba279940

rsp 0x7ffdba2798e0

Stack: (output of x/52x &buf)
0x7ffdba2798f0: 0x00000000 0x00000000 0x00000000 0x00000000

0x7ffdba279900: 0x00000000 0x00000000 0x00000000 0x00000000

0x7ffdba279910: 0x00000000 0x00000000 0x00000003 0x00000000

0x7ffdba279920: 0xba279a68 0x00007ffd 0xba279a88 0x00007ffd

0x7ffdba279930: 0x00000000 0x00000000 0x0000008a 0x00007f2f

0x7ffdba279940: 0xba279980 0x00007ffd 0x00400697 0x00000000

0x7ffdba279950: 0xba279a68 0x00007ffd 0x00000000 0x00000003

0x7ffdba279960: 0x00400061 0x00000000 0x004004f0 0x00000000

0x7ffdba279970: 0xba279a60 0x00007ffd 0x00000000 0x00000000

0x7ffdba279980: 0x004006a0 0x00000000 0x796aa493 0x00007f2f

0x7ffdba279990: 0xba279a68 0x00007ffd 0xba279a68 0x00007ffd

0x7ffdba2799a0: 0x7980d548 0x00000003 0x00400654 0x00000000

0x7ffdba2799b0: 0x00000000 0x00000000 0xe9d7f02d 0x66c14e70

Other addresses:

&buf: 0x7ffdba2798f0

&len: 0x7ffdba279930

&j: 0x7ffdba279934

&p: 0x7ffdba279938

&min: 0x7ffdba27993c

A program with a number of possible buffer overflow vulnerabilities is given above. The program is

executed with an input passed in at the command line from the attacker. The state of the registers and

stack when the program reaches line 6 is given. Note that all addresses are 64-bit addresses. Answer

the following questions (next page):

Midterm ECE568: Computer Security Pg. 3 of 6

1) Would an attacker be able to use either buffer buf or string to corrupt memory in the

program? Please give a range of what memory can be corrupted in both cases [6 marks]:

a) buf

b) string

2) At what addresses on the stack are the return address of main and foo located and what are the

values of those return addresses? Explain your answer [8 marks]:

a) Return address of foo

b) Return address of main

Midterm ECE568: Computer Security Pg. 4 of 6

3) Please draw a diagram of the attack buffer needs to inject into the program to exploit the loop

writing to buf in the function foo. Please give size of the nop sled, shellcode, return address

and other elements in the buffer. For all values other than nops and shellcode, please give the

values to be written. Assume the shellcode is 46 bytes in size. You can assume you are able to

inject as many null characters as you need with environment variables [8 marks]

4) Suppose the line 9 and the following loop is changed to:

9: arg = arg + 10;
10: for (j = 0; j <= len; j++)
11: *buf++ = *arg++;

Does this affect the need to use environment variables? Why or why not? [3 marks]

Midterm ECE568: Computer Security Pg. 5 of 6

Question 2: Defenses and ROP attacks [25 marks]
1) Please fill in the following table. For the performance column, please indicate whether

the performance is considered “better” (with a “+”) or "worse” (with a “-“) than most

other defenses.

For the “Stack smashing”, “Format String”, “Double Free” and “ROP” columns, indicate

whether the defense makes harder/impossible to achieve the attack’s objective (with a

“+”) or does not make the attack harder at all (with a “-“). You can consider the

objective of “Stack smashing”, “Format String”, and “Double Free” to be to corrupt a

memory location (could be data, a pointer or code), while “ROP” is to execute code of

the attacker’s choosing. [18 marks]

Defenses Performance Stack smashing Format String Double Free ROP

Stack Canaries

NX pages

ASLR

Type-safe language
(i.e. JAVA)

CFI

kBouncer/ROPecker

You may add any explanations you have for your answers below:

Midterm ECE568: Computer Security Pg. 6 of 6

2) Suppose an attacker wants to mount a ROP attack against the vulnerability in the function

foo from question 1 (on page 2). Assuming that gadgets the only way gadgets can affect

rsp is to return or pop values off the stack, what region of the stack would they want to

overwrite with the gadgets and fake arguments in their ROP attack? For argument’s

sake, you can assume that the top address of the stack region is 0x7ffdba27a000. Please

give the starting and ending address. [4 marks]

3) Given the assumptions in the previous question, what is the maximum number of gadgets

the attacker could invoke in their ROP attack? You may give your answer in hex if you

wish. Please justify your answer [3 marks]

Midterm ECE568: Computer Security Pg. 1 of 6

ECE 568 – Computer Security

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

Mid-term Examination, Part 2, October 2021

Name

Student #

Answer all questions. Write your answers on the exam paper. Show your work.
Each question has a different assigned value, as indicated.

Permitted: one 8.5 x 11”, two-sided page of notes.
No other printed or written material. No calculator.
NO PHOTOCOPIED MATERIAL
Total time: 50 minutes
Total marks available: 50 (roughly one mark per minute)
Verify that your exam has all the pages.
Only exams written in ink will be eligible for re-marking.

3 /25 4 /25 Total

Midterm ECE568: Computer Security Pg. 2 of 6

Question 3: Format String Vulnerability [25 marks]

Suppose you find the following vulnerable sequence in a program as follows (note a double

“%%” in the format string tells the format string function to print out a single “%” instead of

interpreting a command):

sprintf(log_msg, “[%%s:%%u]: %s\n”, attack_str);

snprintf(buf, 256, log_msg, filename, line);

As an attacker who can control the contents of attack_str, your goal is to write the

value 0x01234567 to the target location 0xbffffe30. You should assume the

following:

• There are an additional 8 bytes between the last argument of the vulnerable format

string function and the location of buf on the stack.

• Variable filename points to the string “foo.c” (without the quotes)

• Variable line contains 35.

• Any shellcode you write is 46 bytes in length.
• We are on a 32-bit x86 machine

1) How do you overcome the 8 byte gap between the vulnerable format string function

arguments and the location of buf on the stack? Be as precise as possible. [5 marks]

2) If you chose to write the target location in one byte at a time, how many writes do you

need? To what addresses and in what order should those writes be made? [5 marks]

Midterm ECE568: Computer Security Pg. 3 of 6

3) Please draw the contents you would need to put in attack_str to achieve the stated

goal above. [15 marks]

Midterm ECE568: Computer Security Pg. 4 of 6

Question 4: Cryptography [25 marks]

After watching the cryptography lectures, Crypto Cathy decides to invent her own cipher

CCath, which operates as follows:

• The user picks the name of her favorite school mascot and makes a n-byte string to use as

the key, where n is the length of the character’s name

• For each character in the plaintext, she converts the corresponding letter in the key to a

number (i.e. a=0, b=1, …, z=25, A=26, B=27 … etc…) and adds it to the plaintext

character mod 52 to get a new character. For example, a plaintext “d” with a

corresponding “c” in the key would yield ‘d’ + 2 = ‘f’

• If she runs out of characters (i.e. the length of the plaintext is greater than n) she reverses

the key and continues using letters from the reversed key for the next n characters. If she

runs out of characters, she reverses the key again to get the original key and continues.

She alternately uses characters of the key and its reversed key until every character in the

plaintext has been substituted.

As an example, if the user had selected the name “Godiva”, then the sequence of characters

she would use to add to the plaintext with would be “GodivaavidoGGodivaavidoG….”. The

first letter of the plaintext would have ‘G’ (32) added to it. Answer the following questions

about this cipher:

1) What cipher covered in class is this cipher closest to? Please explain. [5 marks]

2) What is the number of keys an attacker would have to try in a brute-force attack? If you

cannot estimate it exactly, state any assumptions you need to make and try to be as

precise as you can be. [5 marks]

Midterm ECE568: Computer Security Pg. 5 of 6

3) What problem(s) do you see in the way the keys are created for this algorithm? [5 marks]

4)

Above is a picture of a stage in a Feistel network. Suppose the XOR at (1) is change to

an AND. What would be the consequence of this change? Please explain. [5 marks]

(1)
(2)

Midterm ECE568: Computer Security Pg. 6 of 6

5) Suppose you place a function g() at (2) such that 𝐿𝑖 = 𝑔(𝑅𝑖−1) . What properties should

g have ideally? Please explain. [5 marks]

	ECE568F-Midterm-2021-1
	ECE568F-Midterm-2021-2

